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Abstract

Gauge theories which have a phase transition could be
useful in the study of quark confinement. One of the simplest
theories containing a phase transition is the Coléman—Weinberg
model of massless scalar electrodynamics. The calculation of
the renormalized effective potential for the Coleman-Weinberg
model is reviewed in detail using the path integral formalism.
The effective potential is evaluated at the one-loop level to
show that the model exhibits dynamical symmetry breaking at zero
temperature. The divergent parts are shown to be renormalizable
to two-loop order. The temperature dependence of the effective
potential is then calculated to one-loop in order to demonstrate
that the symmetry of the model is restored at high temperature,
indicating a phase transition. Finally, for models which
exhibit this type of behaviour, applications to SU(n) theories

of quarks are discussed.
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I. INTRODUCTION

Recently 1in particle physics there has been much interest
in SU(n) gauge theories which describe quarks and their
interactions. Individual quarks have not been observed and
hence it is believed that they exist only in bound states.
However, at sufficiently high temperatures it is thought that
these bound states could possibly undergo a phase transition
into an unconfined phase of free quarks. One can describe the
confined nature of the guarks at zero temperature in terms of a
symmetry in the underlying gauge theory. This symmetry will not
be present in the high temperature unconfined phase. (When the
state of a system does not possess the same symmetry as the
underlying theory describing 1it, the symmetry is said to have
been spontaneously broken. A detailed review of symmetry
breaking {2} can be found in Abers and Lee.) Thus if we wish to
include both phases in our theory, we must construct a model
containing an intact symmetry at zero temperature which can be
broken at high temperature.

With the eventual construction of such a model as the
motivation, we need to develop some calculational techniques.
In particular we will look at the effective potential method.
The effective potential describes the ground state of the
system, and from it many physical results can be derived. The
effective potential method is a semi-classical approximation in
that if one calculates it perturbatively, the lowest order term
is the classical solution with the higher order terms being the

quantum corrections. We illustrate the techniques involved




through an example by doing a detailed calculation of the
effective potential for the Coleman-Weinberg model {6}. This
calculation represents a review of work done in the literature
by several authors {6,9,13,14} on various aspects of the model,
and constitutes the main part_of this thesis.

The Coleman-Weinberg model describes a photon field which
is minimally coupled to a charged, massless, self-interacting
scalar field. It was chosen because it possesses the two phase
property we desire, and yet is simple enough to be used for an
example. At zero temperature the symmetry of the model is
broken dynamically by electromagnetic radiative corrections to
the lowest order (classical) approximation. Note however that
the techniques developed will be equally applicable to models
where the symmetry 1is broken explicitly in the lowest order.
The temperature dependence of the model is such that the broken
symmetry is restored 1in the high temperature limit. Although
there are some differences, this is the same behaviour we neea
for the theory describing quarks, and the technigues developed

for the Coleman-Weinberg model should be applicable for both.
An outline of the thesis is presented below.

Chapter Two summarizes some of the formalism which will be
needed, and lists the main results. For the reader unfamiliar
with the subject matter, references are supplied to the

appropriate area in the literature where details may be found.




The path integral formulation of the theory and the effective
potential are introduced, and a general outline of the procedure
used to calculate the effective potential is given. Also
- included is a brief discussioﬁ of the dimensional regularization
techniques used in evaluating Feynman integrals.

Chapter Three contains a detailed calculation of the
effective potential for the Coleman-Weinberg model at zero
temperature. It is evaluated and renormalized at the one-loop
level 1in a general Lorentz gauge. The equivalence of the
conventional and minimal subtraction renormalization schemes is
demonstrated. The broken symmetry of the theory is also shown.
Then the renormalized two-loop effective potential is calculated
in Landau gauge to show the explicit cancellation of the
divergent parts. Having illustrated the method of obtaining
them, the remaining finite terms are left in integral form and
will not be evaluated here. Finally the gauge dependence of the
effective potential is discussed, as well as its effect on the
physical results of the model.

Chapter Four then studies the temperature dependence of the
Coleman-Weinberg model at the one-loop level. The changes in
procedure from the zero temperature case are mentioned, and the
temperature dependence of the effective potential calculated.
The result 1is 1in integral form and must be evaluated by
approximation techniques. A high temperature expansion is
performed which shows that the symmetry of the model is restored
at high temperature, indicating a phase transition.

Chapter Five summarizes the techniques developed 1in the




preceding chapters. It then gives a discussion of their
application to other gauge theories where new research is
possible, which was the original motivation behind reviewing the

Coleman-Weinberg calculation.
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II. FORMALISM

This chapter will briefly review some of the basic
definitions and procedures needed as - background to the
developments in subsequent chapters. Only the main results will
be given, with the reader referred to the literature for more
detailed discussion. It will be assumed that the reader 1is at
least partially familiar with perturbation theory, Green's
functions, Feynman diagrams and functional methods. These
topics may all be found described in wvarious references

{4,5,12,16}.

2.1 The Path Integral

A basic tool we will need is the fundamental path integral
over functional space. Consider a field theory with degrees of
freedom Q,(x),Ql(x),.... which is described by an action S(Q),
where the action is quadratic in the fields Q,.(x). For this
theory consider the generating functional Z(J) in the prescence

of a source J(x). The path integral expression for zZ(J) is

2(7)= }m exp £ 5@) + {40 cw]

where the symbol '"JQ" denotes the measure on the functional
space. To explicitly show the quadratic form of S(Q) one can

write this as

(2.1.2) :ﬂ g@@ Qxﬁoﬁg (1@ (xmdﬁQ(x )+, (xQL(x))




One obtains Z(J) by performing the functional integral over all
field configurations Q. By analogy with simple gaussian

integration, the path integral can be evaluated to give
(2.1.3) 2(3) = L(o) exp ﬁgd%x (LCXJ M;éTB(x)ﬂ

where

)~Vz

(2.1.0) 1O = (D& M

and the determinant is to be taken in the functional sense. The

identity

(2.1.5) Ae¥f\t: QKPETF(XQIWYX

will be wuseful in calculations. The above evaluation of the
fundamental path integral forms the basis for «calculating the
generating functional for theories with more general actions. A
full description of functional methods and the path integral

formalism can be found in many field theory textbooks {12,16}.

2.2 Definitions

Consider the simple quantum field theory of interacting
scalar fields Qx(x) described by an action S(Q). For notational
simplicity some indices and variables will be suppressed, except
where needed for i1llustration. Thus for example JeQ will be

used to abbreviate_Sd“de(x)Qd(x). Solutions to the theory may




be obtained from a knowledge of the Green's functions

(2.2.1) (;“ T:<:C4\T—«Q(DL.. ..CQQ)\O:>

which are the vacuum expectation values of the time ordered
product of the fields {12}. Using the path 1integral
representation, the ground state vacuum amplitude for the theory

in the prescence of a source J(x) is given by

(2.2.2) 2(3)= S@Q exp[;é(g(m*j@ﬂ

The functional Z(J) may be used to generate the Green's
functions of the theory.

The complicated bookkeeping involved in calculating these
Green's functions can be translated into the simpler graphical
form of Feynman diagrams {12}. The Green's functions can be
found by summing the graphs according to rules obtained from the
full calculation with Z(J) in (2.2.2). The complexity of the
diagrams, as measured by the number of loops, reflects the order
in perturbation theory to which one 1is calculating. Those
graphs in which all parts are joined are referred to as
connected Feynman diagrams, and they may be summed to give the
connected Green's functions.

Instead of using Z(J) from (2.2.2), it is better to work

with the connected generating functional

(2.2,3) W(T) = -ik.ln 1)




because only connected Green's functions contribute to the
S-matrix {1,12}. The perturbative expansion of W(J) in powers
of h corresponds to a loopwise expansion of connected Feynman
diagrams. Hence it generates only connected Green's functions.

Next the effective action 1is defined by the Legendre

transform

(2.2.4) P(@\\t W(T)-T-8

where

(2.2.5) Q(X) e+

The effective action generates connected Green's functions which
are one particle irreducible in Q. This means that their
Feynman graphs cannot be made disconnected by cutting a single
scalar propagator. Finally the effective potential is defined

at constant field C by

(2.2.6) V(c) = —F(q (SAL{X)~\

2.3 Obtaining The Effective Potential

The procedure used by Jackiw {13} to calculate the
effective potential V from the action S(Q) will be followed.
One shifts the field Q(x) by an x-independent constant field C

to obtain S(Q+C). Then the terms which are 1linear in Q are




omitted. Using the definitions (2.2.2) and (2.2.3) yields the

connected generating functional in the form of

W(—X§ = (Coﬂsll(qng‘ L%,an‘m ex{) %(‘T/“QJ"Q\IJIC +T‘Q)

(2.3.1)

SJ)Q Q)(E'T{g(j)uucjr‘cx“l.(, +L|3kgf orc]&r fj.Q)
gﬁQ QX? é_ (“\/u&cll‘uxrfc + T-Qj

~th In

Note that constant, quadratic and higher order refer only to the
dependence on the field Q. It has been shown by Jackiw {13}
that the performance of the Legendre transform (2.2.4) on

(2.3.1) gives an effective potential in the form of

<"‘ gé%x>V = (Consk‘u nJ() - Cft Lﬁ.g@Q QXP /f%(tbuq&r&{'ic>
(2:.3,2)
S@Q CXP :?’( T)L«Qc\ru\t}c + Lﬁalner OWLDJ’>
Si}@ Q_)gP —é”(fbuuc& r'o:&‘\c) | PI

where only connected one particle irreducible graphs are to be

~ ¢k

included 1in the 1last term. Since only gaussian type path
integrals can be done, the 1last term in (2.3.2) must be
evaluated by expanding part of the exponential 1in a power
series. The details of the procedure will become clearer when

it is applied to a specific example {13,14} in the next chapter.
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2.4 Dimensional Reqularization

When  evaluating Z(J) and the Green's functions in

perturbation theory, one finds divergent integrals of the form

d*k
(2.4.1) T ig = (k)

()t
where typically F(k) behaves for large k like k? or k¥ in which
case the integral has a quadratic or logarithmic divergence. To
solve the problem of evaluating loop integrals such as (2.4.1)
which are wultraviolet divergent, one uses the techniques of
dimensional regularization. A detailed discussion of these
methods is provided in a paper by 't Hooft and Veltman {19}.

To solve divergent integrals like I above, one considers

N G\
(2.4.2) 1" = S Baf F(Jv\\

which 1is evaluated 1in an arbitrary n-dimensional space. In
order for the dimension of I° to be the same as I, an arbitrary
scale factor s should also be included in (2.4.2). However,
physical results will be indepehdent of this factor and the
convenient choice m=1 is made. The integral I’ will be finite
in some domain, usually for n<4. It can be evaluated in this
domain and the result analytically continued to include the
region of interest (n=4). Finally the Lim n—>4 is taken,
yielding an answer which will contain poles in (n-4). These
must be removed by renormalization and/or cancellation with

other terms.
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In practice one dispenses with going through the procedure
in detail -each time, and uses generalized formulae if possible.
The formulae for some dimensionally regularized integrals which
will be needed are given in Appendix B. The integrals are over

n-dimensions with the Lim n—s4" understood.
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II1. EFFECTIVE POTENTIAL FOR THE COLEMAN-WEINBERG MODEL

In this chapter the effective potential V«b) is calculated
to (Xh?) for the Coleman-Weinberg model {6} discussed in Chapter
One. In order to show the gauge dependence, a general Lorentz
type gauge term is included in the Lagrangian density. As
discussed in Chapter Two, the expansion of the effective
potential in powers of h is related to a loop-wise expansion of
the associated Feynman diagrams. The one-loop calculation is
sufficient to illustrate that the effective potential is gauge
dependent. The two-loop calculation 1is then simplified by

working with the particular choice of =0 known as Landau gauge.

3.1 Preliminary Calculations

It is convenient to describe the complex scalar field in
the model in terms of two real fields q}(x) and Q(x).
Initially the Minkowski metric g,, (goo=1,9y;="2y) will be
used. The Coleman-Weinberg Lagrangian density is then given by

the following expression {6}.

L= 5»431 ’eﬁ,u@)z *5@/{@%* eﬂ/u(b‘}z

- %(@zﬁ d)iz““l@(cs)u [_\DHA\) Q}*]—L— 'il; (J»QA}Z

where —(24f4(%¢Au?' is a general Lorentz type gauge term, added

(3.1.1)

in order to trace the gauge dependence, in which the parameter

A will fix the gauge choice.
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Expanding (3.1.1) gives

L=3 huluduth —E ALy, 4SRN
AF S 0ALA-LRLA) A0

(3.1.2)

where <., is the antisymmetric 2x2 matrix with &,=1. The

action is then given by ngd“x "

S A= (400,00 - 8y A0, +508. A, L0,

(3.1.3)
N{—P\—[ (q)x¢u>l”%(<\’»gy§)» Qv -—A,,. %,,Au Q}’Jui‘; (JMQAA))ADD

Following the procedure {13} discussed in Chapter Two, we shift
the scalar field (x) by an x-independent constant ‘field Cg
(ie. qux}—€X?4X)+Ql), and then omit the linear terms from the

resulting expression. Note the abbreviation C?=C,C,.
e, B = SR~ e S AL,

- e AL by, +4 ENRuufe + 47 ARLCT - fi\T C’
PR ARG - B -PCa 0 B b
%TCD@(M\D ¢b “?’E@*»ﬂbg»% -3, 8, éu A/w)

(3.1.4)
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Integrating (3.1.4) by parts and dropping the surface terms

gives

S(dtta B ga*{%m Lo ~LeEb A 0uCy,

v2e&u )R, (ﬁ@b ~e EL A0 4{ 1+ e Q)jqu)c\
(3.1.5) VA e}(jﬂ;« A e A A q>f*(“‘* y%ﬁ. ! —T-Z‘C}Cbc’de‘*
LG A0, -3 Chad -2 hhbid,
LA LA A A
Collecting terms together and defining }FAM;[] yields
S(@c. )= 4% § -3t sidlfufo-ed-dadlh
i [eegCe3, )R, +4 AV e 64 G0y —ecu A0 04,
(3,1.6)

4 AL 4 (0120 ()L, A +eBpdace

TR N Yo N Y “’}ﬂ%@“dwh}

At this point we 1introduce a more compact notation for those

terms in (3.1.6) which are quadratic in the fields.
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Consider the row vector QV (x)

Gon FR= (06 G0 Ak Ak A AR)

and the x-representation of a 6x6 matrix M given by

%Q\) (’“ D ’% Cl)” %CD\.C&D eﬁq(: C(Csp
SR A

*Q%jiﬁc% Swlﬂ“kﬂﬁvﬂh%
With this notation (3.1.6) can be written in the form
S(u4Ca, B N\ :gé”x {*%CL* +3 QOMOK)
(3.1.9)

—efh AV AD, + AN G+t AN DD

2 G000 ~%m¢b¢]

Substituting (3.1.9) into (2.2.2), one obtains

sor0 3= [op g (AR ork e,
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e = < @&@%&L& Pe&\ﬁ}*}%%% +elCaCtLA%QM
(3.1.11) '
%(fA}}),, ¢u¢o = %C?Cbmda}@k N f}fql“\ik éb\)(bg >

and we have defined the symbol <B> where

(3.1.12) <B> — S‘QCP‘BQ [B Q*{Jitgjgc“x QTMQ—J
VDGLAexp L TG

As discussed in Chapter Two, there is a correspondence between a
loop-wise expansion of Feynman diagrams and an expansion of Z in
powers of h. 1In order to make this correspondence correctly
{13}, we must rescale the fields in Z with >%&¢>and A~ah%A.

Then (3.1.11) and (3.1.12) may be written as follows.

£ = <exp LJ?Q@SA%X Ee‘fq\oﬂ\kbﬁcmyw e A R

e SN d?cx@x —%C«C\l@ d?b "%\[SVE/L@aand?b q}a >

(3.1.13)

and

(3.1.14) <B >: SMQQ[BQ*XP%&&X QTMQ]
(DOEAexpk {dte F MQ]
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Now we expand the exponential of (3.1.13) in a power series.
Since <odd number of fields>=0, terms in the expansion with

half-integer powers of h will not contribute to Zy.

2= 1 b SA6B e 0A0GNGE

LRI ALTA T D SN RSO EIA
(3.1.15) +ECAH AL RL ~> Ca B E)GN]

X —e€4r P Dty +<2 e ALl Ay

2Qu0bode] > + o)

Performing the multiplication within the double integral gives

o= |4 a3 needey - hadsbmn)

£ {15 e e BN AR RO )
A ARGRGRAWIATTSIOTS: RS NS
(3.1.16)  +2 e QA< ALY AL DI DD (57
+ &G 0 <R ARG DA AL ALY
~2 ¢ Gl CAORGI AL P D
57 Co C QLD (304 B %@ + O(%)

where the linear property <A+B> = <A> + <B> has been used.
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We can now substitute (3.1.10) into (2.2.4) to obtain the
effective action. Recall that only terms corresponding to

connected diagrams are to be included from Z.

(3.1.17) M=} +J%r" + %2\2 + OG3)

(3.1.18) ré £= %C’L (gd”rx)

(3.1.19) r: = LJ{RIS;‘L}@)QQ &?%SC\L&(QFMQX—C
(3.1.20) [ = ~;é~(21~\)

The effective potential may be obtained from the effective

action using (2.2.6), with a similar correspondence for
%Y.

(3.1.21} \/(Q \/ +)R\/ +Jp\\/ +O(JS3)

(3.1.22) N = 2 ek
(3.1.23) . C(gc”x)#]E&«LBODQ@F\WT:SAK@M@JV%
(3.1.24) \/1: ﬁ &{I 4\ <gc{l+x\~\
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3.2 One-Loop Calculation Of V(C)

In the last section the effective potential was found to be

given by the following expression.

VO = Bt v ik (SJ*X)J(A[SMODA exp 4 §d% QM@

(3.2.1)

+ (constant) = Jﬁl\/l ¥ O(?)

where constant refers to terms independent of C. The functional
integral in (3.2.1) can be expressed in terms of a functional

determinant using (2.1.3).

(3:2.20 V)= 31 CH o iK(54%) [ (DetM)] 4 comsh) +4, + OGH)

The functional determinant can be expressed in terms of an

ordinary determinant {13} using (2.1.5).

(3.2.3) L (DedM) :<qu><>gé%+ A (detM)

where M is expressed in the momentum representation

Op(K-2C)-34GCG  detefCe by
(3.2.4) M=
“heh, ThgCy Oy (B )b by

The determinant of M is evaluated in Appendix A and is given by

(A.37) with r,s defined by (A.35),(A.36).
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Substituting these results into (3.2.2), the effective potential

expression becomes

Mley= gt =4 qu b (BacP (-2 -4 oY)

(3.2.5)

X (F-2 Ci} ¥ o(const) + R/, + O

The integral 1in (3.2.5) is more conveniently performed in
Euclidean space. This is possible since the final result for
the effective potential is unaffected by a switch from Minkowski
to Euclidean space. The change is affected by now using the
Euclidean metric (gw.= uv)' and making the substitution k;~>ikg
in the zero component of the momentum vectors. The equivalent

Euclidean space expression for (3.2.5) is then

V@= Gt 2 {8 g (gec) a4 )

(3.2.6)

(B2 3 0C) +0n(K GC]+ (const) +%°Vy +O(H?)

where a minus sign from within each 1ln term has been factored
out and included with the terms independent of C. The integrals
in (3.2.6) will be solved using dimensional reqularization

techniques {19}. Consider the n-dimensional integral

(3.2.7) 1 = (’Z) jm(/gath)
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Taking the partial derivative of (3.2.7) with respect to A gives

AL _ S d"f |
AT ) @ (RP+A)

(3.2.8)

Evaluating this with (B.1) from Appendix B gives

(3.2.9) 4L _ '(1-na) A
AR R

Integrating the result yields

(3.2.10) I = E%:‘)T{g % An'?- o+ <C0n§+qn+>

where the integration constant refers to terms independent of A.

Substituting n=4-2¢

_ \ 1L,
(3.2.11) I = éf' )Df, (7. ) [q + (Cané-f:)

Expanding (3.2.11) in a Taylor series in ¢ and using (B.5) to

expand rk£-1) results in

(3.2.12) I = ;’f_\rr[ ‘\"LV(Z)'\'-L ﬂf\'\(A/L}ﬂj"’O(O +(Con5+>
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Applying (3.2.12) to (3.2.6)

V()= ﬁlc” %Cq %3« 47+ W) + £ L, (S )]
(3.2.13) A }:E + @)+ —An(AC/8 ]4‘ \Hw[g U@+ 5L /48773

+ m [i +UQ)+3 —Ln (/\scl/%n]% )5 +eonst) +RV, +0(k3)

Since the effective potential may only be defined up to an
arbitrary constant, the terms independent of C may be dropped.
Noting that r2+s?=4-48we2?)\", we combine terms in (3.2.13) to

obtain
x
V()= :-C,,—; {A— %{s‘% V) +% +£hqn][lo<ae‘+—— 12 @)
gt O)\l + 1[722”%& +6 NP An(N2) + ie /@h()\r/n)

+ 52 L (As/n) +dnc? (F2et + 13‘2/\1—%&)@%

RV, + O(R?)
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3.3 One-Loop Renormalization Of V(C)

We will take the limit as 50" in (3.2.14), and hence the
£~'term diverges. At this order it is sufficient to renormalize
the mass and the coupling constant A, as this will remove the
Xh) divergent piece from (3.2.14). The usual mass and coupling

constant renormalization conditions {6} for the theory are given

by
L
(3.3.1) i\_é = Mg
A | 1
(3.3.2) WY = 2\3_
ACM c=0 12

It is not possible in this case to define the renormalized
coupling constant )\R with (3.3.2), due to the logarithmic
singularty in V(C) at C=0. Instead one must choose some

arbitrary point C=C, away from zero at which to define AR-

LV Ag
{3.3.3) S e —_—
J\CL} C:(o \Z

Substituting (3.2.14) into (3.3.1) and (3.3.3) gives

m; = %}% A - %Q[E“WW(z)+{+£,‘%][\o<8e‘*-]zdez,\ +1o)\j
(3.3.4) T —Z—%—ﬂl[qle“% ¢t +éXLXm(A/z§+A3;}2Ln(/|l{)+ ﬁ\%l,ﬁ,h (/T\is')

136e" + ZN U@\ 1 (Rleul;—’AtSde"Aj% =0
C=o
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and

Ag = A = 2 [ €400+ 4 108 - 2ae) + 103
aro sl [netne hand) B0 5E 0

G (?7_ el + 8 1—90192)\>+ logett +1oN ~124 el)]

Since both the bare and renormalized masses are zero, there is
no need to wuse a mass counterterm. However the coupling
constant A differs from AR' Expressing A in terms of AR from

{3.3.5)

A= AR + qEa[€ F YO+ it [108et-nuetdy 1047 ]

(3.3.6) ”};ﬂm[‘ﬂ@,@ne“réig @_ls) /\Rfaj,,\( )4./&_%3_%(/\&5&)

Y OnCo (qle” + 5 A —3a e’*A@ tloget 4 \O/\E'—\'Zdeua + O(‘Ff}

where rgp and Sg are merely the expressions r and s wusing AR

instead of A. Substituting (3.3.6) into (3.2.14)

Y
Vi) = 3 %)\K +T:3:rz[(7le“ +H R -8 ) In(C/C2)
(3.3.7)

_108 &M —10A + ma@% O
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Since AAR was defined at an atbitrary point, one may redefine it
as follows

)\?\ ——5 N + %@}:\oge” £10Ag N Mg
{3.3.8)

+(Fret + % )Ag -Raethg) b Cﬂ

Substituting (3.3.8) into (3.3.7)
(3.3.9 V()= [/\RJr 2 M +9e* - ae /\Qﬁncj +OH)

This is renormalized effective potential to (Xh).

While the above renormalization procedure was simple enough
at this level, difficulties arise at higher orders. Expressing
,\ in terms of /AR from (3.3.5) to the next order would be an
onerus task. In addition, the charge and the fields may need to
be renormalized. Things are greatly simplified by wusing an
alternate renormalization procedure called minimal subtraction.
With this method the coupling constant in (3.2.14) is defined as
a power series in h. The divergent pieces in V(C) can then be
cancelled by an appropriate choice of the coefficients in the

power series. Substituting A=AO+EA,+BZA1+CXB3) into (3.2.14)

cH I
V(O = I}?%’\O R, “qi?;l[f +UR) +§ %@(\08# -],

(3.3.10 +ioA]] + & 1[}164%8 AN Aoro%(/_\g_&,)

i

+ ngf /&h(*—‘*‘.%) P InC(F2e 4R *%oeel/\cﬂ% +O(+)

ELKIRK COLLEGE LIBRARY
f L\('—vir‘ ”'Q‘X \H B C
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where r, and s, are the expressions for r and s using A, instead

of‘A. Making the following choice forlA‘

A= @bnd" [s"wan—;_ fthn J[108 €% 41042~ el,\a]
{8.3.11)

T [retne 00 0.00) + M58 + K, 4

) 7 3

and substituting (3.3.11) into (3.3.10) gives

(3.3.12) V()= %—T[)\o+%1(%A:+qeq_del)\o\)ﬂncz:) + O+

The interpretation of Ao in terms of the usual renormalized
coupling constant may be made by comparison with (3.3.3). Since
(3.3.12) is the same as (3.3.9), the two renormalization
procedures are equivalent. Henceforth only the simpler minimal
subtraction method will be used. When it becomes necessary, the
charge and the fields will also be renormalized in this way.
Through simple algebra one may obtain the stationary points

of v(C) from (3.3.12).

l6A, 7% +% (%Xo +9et - de“/\a)
Uk (FX +9e4 —aer)o)

{3.8.13) C=0 N C=i€><\>—

where C=0 is a maximum and the other two points are minima.
Since the minimum is no longer at C=0, we see that the O(h)

correction to V(C) has indeed broken the symmetry dynamically.
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3.4 Calculation Of V(C) In Landau Gauge To Two Loop

The expression for the O(h?) correction to the effective
action was found in Section 3.1 and is obtainable from (3.1.20)

and (3.1.16). ‘
[ = Gd¥% [{3 AR 0600 617 = 2 {0600, D0 By
x4 (d'h A”,[&sqd Epe (AL 0 B g9 AN L D) e 7
=2e® €44 Cp < A, a0 Dy Ay Auty) D)y
(.o 3 A Cad G AL, Qe By Qe dp(y) Dot 7

+e"CaCh CALXAL Dald) AV Ay&) Dy vy

~$ €% CaCp € Au) Aub0D,60 D) D) By ()Y

+35 A GGy COIRI DI Py Dey) D) CD;,(*/)ﬂ

We define the following notation

(3.4.2) Ggy (xyy) = —4 D P17

(3.4.3) G, (Y} = —4 (AL Av(‘/\>
(3.4.4) Gub(x,\/) = 'L<Au(x)¢b(~n>

(3.4.5) qu(x,\/) = —s <CPq(X) AV(Y)7
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Next we expand (3.4.1) using Wick's theorem {12}. As discussed
in Chapter Two, only the terms corresponding to connected
diagrams which are also one particle irreducible in ® are to be
kept. Also note that £ ,q<®,P;>=0 since €,4 is antisymmetric

wvhile <Q,®d¢> is symmetric under a<>d. Thus we have
4l A
Pr,_ = - Sd X["Lel G,aM(X)x) qu(x)’o - a—! qu(x))() be(X)X)

5 % Ggyp (X% qu(x,x:)] 4 {quxd’*y % 2e4CaCy G060 6, 0G0

(3.4.6) £&€€p By (ty) [(JZ 17 Gob 0o Gapto) He Gl Gw»]
1
+ ’3‘)\[, CaCy [ZGq b06Y) Ggp(ay) Geg Gry) H 4G (x23) Gy Gy y) Gyy, (xﬁ‘l)g

+ <+€nns with fadors of +he form Ghb(my)or G;vﬁﬁﬁ

Fourier transforming to momentum space

it 4% (L,
Flz _..Sc{qx 6779_)‘* @77“[%“_6 Gmi@ Gaq('&)—‘l:ll{ GQQ(P)GBL(Q

’22%{ Oab(®)6pal®) —% € €4 € Gur (p44) b b, Gap(®) G (o)
(3.4.7) '% et Eqd Eb@ GU\J(P‘\’IZ) E,M P\, Gq‘(_'(ﬂ?.) Gdb(?)
=y Gappr) Gy Gy ul®) =2 CaCi Gy (P Gseld G, (612)

- %AZ-CQ Cb GQF(P+,PL) G-Fd(PB Gdb(ﬂl]

+[Jr€,-m5 with —qulrors of the -porm GMB(P) or qu(ﬁ):}
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Recall from (2.1.2) and (2.1.3) the following expressions.
(3.4.8) Q(T\zgﬂQ exp £ §4%(1QTMQ + TTQ)
(3.4.9) 2 (7) = Z(o) exp fé—fﬂ["\“‘j’d”x

From these one obtains respectively

_ IR Qupoay) exp 1544 e
. CDQ@ exp £ (4% QTMQ

sy
(3.4'.10) m‘m)

O
c4.11)
i 2T,00 6T

A . =
— 4 %%x—y} (VL,B

V=0

Equating (3.4.10) and (3.4.11) yields <Qq(x)Q$(x)>=iS“(x-y)M§é.

In keeping with the previous notation this becomes
Gde(x,y)=%“(x—y)MJ;. Fourier transform to momentum space to
obtain Gdg(k)=MJ;. In this case the matrix M is the one given
by (3.1.8). The momentum representation of M is calculated in

Appendix A. In ®=0 Landau gauge the result is given by
cl -
(.412) Gy (8)= [G,, (- 20)4 dcq) (- 40T (K4
. =
(3.4.13) G, (B)= ("%v +£M}Zy/pzl)(lll__elc‘7_)

(3.4.14) (g (k) = Gup(B) =0
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The (O(h?) contribution to the effective potential V, may now be

determined.

4 4
\, = S(%H %—%HE‘_-@ Gul®) Gaq(B) »-ﬁ% CualD) Gy (8) ~E1GL D16 (B)

4 g o Gunfreh) b (b Galb G + 0,606 8) G ()

(3.4.15) A
€'(aCh, Gob () Gy (P Gy (B) —é\ng C Gp() Gy (B) Gpy(pr )

- 2 CaCh Garlprh) 649 Gar )]

The terms in (3.4.15) correspond to the five two-loop Feynman
diagrams which follow. The integrals can be evaluated with

dimensional regularization techniques.

3.5 Scalar-Photon "Figure Eight" Contribution To V(C)

Figure 1 - The Scalar-Photon "Figure Eight" Diagram




Consider the term in (3.4.15) given by

d’p d% &
(3.5.1) I‘ :867—5‘3“ -(—2——’:7\’\ 'e—z G}uu(?) qu(ﬂ&>

which corresponds to the Feynman diagram in Figure One.

Substituting (3.4.12) and (3.4.13) into (3.5.1)

o d % (I-9.uu) I \
(3:5.2) I\ g@ﬂ) " (Pl e’zc'l)[(}li__écq' +(£1”%Cli)

As discussed previously, we may evaluate the integrals using the

equivalent Euclidean space expression

(h-ne’ \)e 4 c&ﬂpi \ } '
(3.5.3) I\/ g@ﬂn Qn‘)ﬁ <?1+€’LF)[(A1+%\§ +(}21+%CLJ

Evaluating the integrals with (B.1), and setting n=4-2¢ gives

(3.5.4) Iﬁ%(?—le)e (q )q_zs_(ezC) [ Ca‘lE CZ)\{J

Expanding this in a Taylor series in € and using (B.5) to expand

fk£-1) results in

T,= tC'in [mm ¢ ST

(2.5.58)

=L (M) =30 (\) -—w!z“cﬂ% +F (),,0) +06)
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where

R(yed)= 3 e*cq(\w‘lg T0(3) 242 (2C)

FLH LU ¥ 6 L (A ) +6.Lr (%) b Lnlt 1) +88n(EC)

~LU L) In (1Y) +7 2 (2 V)18 8n(47) In(4C)
) 2n (3C) +90n() (4 )

1+ (€CY) I () + ( Z +240) - V)

ALYD)| 812 n(€0) 4214 L (lhr) ~Un (A —3%\(%@%

3.6 Scalar-Scalar "Figure Eight" Contribution To V(C)

Figure 2 - The Scalar-Scalar "Figure Eight" Diagram
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Consider the term in (3.4.15) given by

A n n 2
(3.6.1) Iz: i S %Er)h %_—%h[éqq(?) GBLUD +26qb(?\ qu(}zﬂ

which corresponds to the Feynman diagram in Figure Two.

Substituting (3.4.12) into (3.6.1)

d" ot -\
e ({3» ci{&v E[ 40T 4 (- Cﬂ[(ﬂzl—é@)
(3.6.2)

r(re- 40 +2 [(p- 30T (8- 3 (-4 (-4 Cﬂ

Changing to the equivalent Euclidean space expression for I, and

collecting terms yields

o ?ﬁl dh 2. A7) d t 1, A2
11“'LH[56£T(?*1C>;[g( )(&‘+ C{)
/A 2
3/\[g%% (?14—-,)‘7_—@)] 3/\[§é) (?1+%C1)]

Evaluating the integrals with (B.1), and setting n=4-2¢ gives

seoTe b P f e aper

(3:6:3)
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Expanding in a Taylor series in £ and using (B.5) to expand

[e-1) results in

34
%= éééiﬁfzglém s S L [7}4“/1)~3K3£L~(A> HZQ%\( )

4 () — U /@n(clz% v F (A ey <) +0(e)

(3.6.5)

where
3

A\e\d_ \1(\4/) ( 1677 {“‘ W@ U2 - ve)
IR ( RCYR) 41802 (AC2) +1LH(ACH) $24 L2 (Urr)

(3.6.6)

“ Y40 Ln (Ur) S (ACA) =B (47) o (ACY4)
F2WQ) 28 (4) 2208 (ACY2) — Leln (A 0/6)]%

3.7 Scalar "Hamburger" Contribution To V(C)

~ .
P7) r
/ \
\
L Pth )
\ !
\\ b
X Ak

Figure 3 - The Scalar "Hamburger" Diagram
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Consider the term in (3.4.15) given by

F(d% A
Ly= i\<a§(?.rr) oy Ca Cb[@b@ 634(&)64;5(?%)

(3,7:1)

+2Gyg (prh) Gy () Gy (B)]

which corresponds to the Feynman diagram in Figure Three.

Substituting (3.4.12) into (3.7.1)

)\l dn C]h/ﬁ — a2 -t 2 2\
1y= =50 g(?%)" ({77)“{(?”’%0) [U’z “%CZ)((PH%)‘%;C)‘

(3.7.2)
= ~) - - -1
+(# -2 ( (M”“-%clﬂ +2(p+)-20) (£- 2 (P-4 g
Changing to the equivalent Euclidean space expression

o 4% , ¥
£ =1 B gt e oot

(3.7.3)
3 (peat + AT (Redc) (s %@)"]

Thus

-/\"‘c2
(3.7.4) T, = [I (40 2 2) 3T (4

>

EE 1% %C)]

where I(A,B,C) is evaluated in Appendix C and is given by

(3.7.5) T (A,B,0) =g%_9_ d'k (P!z)i“m (KlJrB) (F+C)
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Substituting (C.24) into (3.7.4) gives

1= ’\3 = (b gw +§[!wm+8—ﬂm<x/zuﬁ)

(3.7.6)

15 L (W)~ 162 + (0, 5.0) +0(6)

where

At
sr R0 - E[Raa 010 pEaaicd

and F.(A,B,C) is given by (C.25).

3.8 Photon "Hamburger" Contribution To V(C)

3

Figure 4 - The Photon "Hamburger" Diagram
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Consider the term in (3.4.15) given by

o .
(3-8-1>) IH:"‘EHS(:ZE)V\ %n CaCy GQB<P+'PZ)GQ\)<?)GUM(AJ

which corresponds to the Feynman diagram 1in Figure Four.

Substituting (3.4.12) and (3.4.13) into (3.8.1) gives

&% 4" dh 2
H - H C g 6/‘% (’2 Pty (3&14{‘2) + Qo b Pv y £ ]
(3.8.2)

-\ - -
X (- 4) (hr-ec) (poered
Now we <change to the equivalent Euclidean space expression for
Iy given by
~ d"p d"# o _1]
IH_ = C g('lrr)" (Zn)“ ,(h 1)+ ?“'ﬁ“ Py ﬁvP A
(3.8.3)

- -1 -1
X ( G+aY + 4c2) (IalJre"Cl) <?"+elc~)
and substitute n=4-2€ to obtain

(3.8.4) L= - eL*Clﬂ(Z—lg)I A & @)+ (4G e, ezczﬂ

where

o I Pubyhaky 7R
@7 QA" (ox )1 A) (&2 +B)(p4C)

(3.8.5) J(A,B,0)= S

and J(A,B,C) is evaluated in Appendix D.
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Substituting (C.24) and (D.31) into (3.8.4) gives

I, = efc (lor) g—} € (e re W (2r+2e)-5
(3.8.6)

+3 D B)- 100 () In (220100

where
EELLEL Fq“)@»c):’g”cl[z F(dc e ec) + R (AC ec elﬁlz;

and EI(A,B;C),ET(A,B,C) are given by (C.25),(D.32) respectively.

3.9 "Cracked Egg" Contribution To V(C)

- ~
\
// h
, th VA
‘ J
Y /
p . :
N
No ~

Figure 5 - The "Cracked Egg" Diagram
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Consider the term in (3.4.15) given by

‘ d" 4
I‘S: ’ielgﬁﬂ)h P Fad ‘EBF ., [ﬂ GW(PHE)GL(@G#(P)

{3.9.1)
¥ By Gy (P4 Gag () Gup ()]

which corresponds to the Feynman diagram in Figure Five.

Substituting (3.4.12) and (3.4.13) into (3.9.1) gives

_ 1y 2(dP J% VR
(3.9.2)

X (prr-ec) (£ daV -2y

Now we change to the equivalent Euclidean space expression

N d ackhu) ot Ry
I%-‘q,e S‘l Y {%ﬁ. B« v %A{ 9MV _jig¥§§%£é)%)

(3.9.3)

X ((?h&)l_‘_ Q'LC-L)" ( /el'z_ + %Cﬁ_}’l ( P—L"' %Cq_)’"
to obtain

(3.9.4) 16: 1t K(elcl) Abcl) %@)
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where

d'p wthu)(put By
K(AxExQ'gQﬁ) o [(pl Em)@lv mg Yy T et b ) 4'?13{&;3\

(3.9.5)

X (psFs AY (&2+ B Y (pr C T

and K(A,B,C) 1is evaluated in Appendix E. Substituting (E.24)

into (3.9.4) gives

T =t e {her(elme -1
+E7[ g (M r@-2X) +3(eH -2 -2 1) + 2 Ln(2)
(3.9.6)

~&(&-1N) In(€/kn) + Xlﬂh(‘%)"ﬂ’“ ¢t (‘eq‘v‘elf%/@}
tFs(Ae, Q) +O(e)

where

(3.9.7) E(&é&>:%éﬂ%(@&)%@f%§)

and FK(A,B,C) is given by (E.23).
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3.10 Two-Loop Renormalization Of V(C)

The effective potential in ®=0 Landau gauge may be obtained

from (3.2.14).

" :
V(@)= %7 gA % (A AT €140+ + 4 (108 +10X)
(3.10.1) +%(6L+7rl>ﬂl[jrle“,@nei+6)\l,€“(%}-’r%‘*/\’“%(%)

i (Frex +f‘-—§@% RN, o+ O(R3)

Substituting the results of Sections 3.5 through 3.9 into

(3.4.15) gives

V, (4,0 = C by [ €1 (-3 R+ SRSt

(3.10.2)
5

——‘5e4> )qu(A,el):[ + E()\,el) C)

A=\

The finite parts Ei(A,ez,C) of V, have already been stated in
Sections 3.5 through 3.9. The term f(A,e2)C*(16n2) L is an
abbreviation for the numerous divergent pieces of V, which have
only a simple C* dependence on C. They are not stated
explicitly here because their exact form will not be needed in

the renormalization procedure.
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Proceeding with the minimal subtraction method, we make the

following power series expansions- in h.

(3.10.3) A= dathA + RN + -
(3.10.4) €" = es thel +h el + - - -
(3.10.5) C“—‘C‘(\ +h%1%iﬁ7:¢l+...)

Substituting these expressions into (3.10.1) 1leads after some

simple algebra'to

4 -
V() = %[Xo ﬁ%mv\oz, ~(m [ rva 42

Jrﬂnqﬁ][l%"‘ + 103 eﬂ Jr(ébf/rlyl [72:3;*% &
o) I (4) 3 00 Bn(A2) 0 (Rt 4+ % 1)]}

H{LEA.L YL AL (2 r22) — (W6 T [ €' yR) +4

(3.10.6)
Jr/@v\qn__][’lo/\o A Fllbeler ¥207,), +lib3, ea‘*] +(6Lfn"~)"[72€<}e7“
Mtz IneZ +1AN, Ia(42) + 50,4 £n(48) +224,),
12, (FLef £ 202) 4 (i eer + 2300,
FHU 2, ef Ined £122, A An (42) £ S5, 02 An (&)

FhnC (2 e +42%, A})]?J RV, (Mg, e2,C) +O(K)
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Make the following choices for )\l and )\7_.

Ay = =22 + (3653 €140 43 +hattn[[l0)T +108e]

(3.10.7)

(647 [T el +6AT An (M) +2A2 200 6) ]
it
M =X AR de(2 ) +(3 ) €y +4
M/h%][lo/\a A +202, ), +llbere? +24 2, e;*]
—(bumY }:?7_@, ey Hluttel e In o2 +12 5, )\, Mn (Ao /)
40 ) An (A /6) 4 204, 32, (F26% +202)

Flul 2, e hned 112, AT An (%) 142 A;Lﬂ“(ieqﬂ

(3.10.8)

Substituting (3.10.7) and (3.10.8) into (3.10.6) gives

Y
e §fo i e
52, 1055 *Jﬁl[/\z 3 A (1672 ( b2 el 362, e =N

Ut (162y [108 }\.5 +g/\o eo“t@% u 3f'-‘,l\/Z(/\oxec?—)C\J
R (Aye, C) + O(F)
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where

(AO) € 3C>v L{/(Eg\c)w, {%[W(l)"’%'\'pfhuﬁ][\o};i‘HOg/\aeoﬂ

(3.10.10)

2 (V& neF +602 In(No/2) + 502 An(No/ m\%

Substituting (3.10.2) into (3.10.9)

V() = g/\ v (87 (501 #9ef) InC?

-\'"7\1[)\ ~\'< Wbm) /@V\C %1\45"((1)1 ge")

(3.10.11)

HR ﬁ F. (Ooe2,C) +0(K?)

Make the following choices for Al,z‘,ef

(3.10.12) )\1: A.L/ «l‘fi(\éﬁl)ﬁzwc(/\o,e})
(3.10.13) € = Res (b)Y ¢

(3.10.14) e = (L\g,py -
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Putting these choices into (3.10.11) yields

V()= % g Aot (8T (A0 +e,t) I C”‘+ﬁz}

{3.10.15)
e 3
—\—“V\IZ FL<)\°\Q}\C> + O(%?®)
A=
The divergent (O(h?) pieces have thus cancelled. The choice of

Alis left open so that it may be used to cancel those terms in

F; (Ao,€2,C) which have a simple C" dependence on C.

3.11 Discussion Of Gauge Invariance

The one-loop renormalized effective potential was found in
Section 3.3 for the Coleman-Weinberg model in a general Lorentz

gauge.
L}
(3.11.1) V(O)= %ﬁ[)\ +%(%X+%‘bdﬁ)£uc’~ + O(R)

From the presence of the gauge parameter o in (3.11.1), it can
be seen that the effective potential is gauge dependent. The
question has been raised {7,13,14} as to how this will affect
the physical consequences of the model. Any physical quantities
obtained should a priori be independent of gauge choice. There
can be no direct physical interpretation of a gauge dependent
effective potential, and thus the validity of any approximation
to the complete V(C) must be looked at.

The leading term of the scalar-vector mass ratio for the

Coleman-Weinberg model has been calculated by Kang {14} at the
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two-loop 1level 1in a general Lorentz gauge. To the extent that
the approximations made have the same behaviour for all gauge
choices, the result is gauge independent as expected.

One assumes that it is possible to work with the effective
potential in a convenient gauge to obtain valid physical
results. Although the intermediate steps may be gauge
dependent, the a priori assumption of gauge invariance for
physical quantities will ensure that the final result is

correct.
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IV. FINITE TEMPERATURE EFFECTIVE POTENTIAL

This chaptef will study the temperature dependence at the
one-loop 1level of the effective potential for the Coleman-
Weinberg model just looked at. For simplicity the o=0 Landau
gauge is worked in. The Boltzmann constant kg will be set equal
to one. The Euclidean metric (g,,=%.,) 1is wused and the
temperature parameter will be the inverse temperature B=Tﬂ. The
main result is to show that the broken symmetry of the theory is

restored at high temperature.

4.1 Changes From The Zero Temperature Case

The method of calculating the effective potential V(§™)
closely parallels that done in Chapter Three for V(%'=0). One

begins with the partition function

T“[ exp(=pH) T Q"Pﬁ: §d% T'Qﬂ
Tr [ex? (“&H\]

(4.1.1) EL?(IT):

where the trace is taken over all possible states of the system
described by the Hamiltonian H. With this exception, the
definitions of Section 2.2 are unaltered. The calculation then
proceeds as described in Section 2.3 with only a few changes. A
detailed description of the finite temperature path integral

formalism may be found in the literature {3,8,11}.
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For calculational purposes, one need only note the
following few simple results. 1In the finite temperature case
one is restricted to the section of Euclidean space bounded by

0<t<®. The volume element thus becomes
(4.1.2) d'x =) 4#\ &x
(o]

The boson fields defined on this space must satisfy the periodic

boundary conditions

(4.1.3) AM(%J(:) = rqu(oﬂ
(4.1.4) D, (3,%) = O, 0,%)

The time integration 1is now over a finite range and hence the
Fourier transform to momentum space 1is discrete rather than
continuous. This results in the following changes from the zero

temperature formalism.

A 3
(4.1.5) — > g é__!i
@AY v S (27

N

(4.1.6) Ay — a=1rnp"

With these results one may now calculate the effective potential
at finite temperature. Note that for zero temperature §—© and

the results will reduce to those in Chapter Three.
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4.2 Finite Temperature Calculation Of V(C)

Recall from (3.2.6) that the one-loop effective potential

for =0 Landau gauge is given by

Y
V(v'=0) = -)-\Ef—,- I g‘zf){a,em(ﬂﬁacz)

(4.2.1)
(R4 C) 4 (8244 0)| + O(R?)

for the 620 case. Noting the changes described in Section 4.1,

the result for the general case is then given by

3
V= A ggé’%ﬁ[ eadns
(4.2.2)

YL B4 2S ) 4o (B4 wﬂ v O(F)

Consider the integral

(4.2.3)  L(§") = %"gd}%— D
where

(4.2.4) D :g Ao (B 5 A" 5 a2

Taking the partial derivative of D with respect to k2 gives

(4.2.5) il%, = % (B4 A +Mn’“)~‘
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The series (4.2.5) may be found in reference tables {10} and

summed to yield

(4.2.6) "{D_L ¢ th[E(2a)"]
&}Z L j%(izl +-A1)V1

Integrating gives

(4.2.7) D= 'Z,Qn\(s\n\a[g (% AIYID + D

with a constant of integration D’. Writing sinh in terms of

exponentials in (4.2.7) and substituting into (4.2.3) gives

L) = 6§ 2 o (B 242

(4.2.8)

D+ (- exr%“ﬁ(zz‘(#ﬁ)\j

The term involving 1n2 may be dropped as it is independent of
AZ, At zero temperature I($7) in (4.2.8) must reduce to its
equivalent I($7=0) calculated in Section 3.2. Thus (4.2.8)

becomes

(4.2.9) T(¥)= TI(s ~o\+’2$“'g(1&)3 %? ex‘;[&(}iﬁ,ql’{)%
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Finally the integrations over angles may be performed and the

variable change x2?=¢%k? made to yield
(12,100 T(§) = T5=0) + mg* {d 5t o I-expl= (s

Substituting (4.2.10) into (4.2.2) to obtain the finite

temperature effective potential gives

V(") = V(§'=0) %Jgg g:x x{&@hf l—exp[}(x%@‘elcl\vlﬁ

(4.2.11)

£ n § 1= exp [= (54 A
AtV -exp[-Oerg 204+ OGRY)

The term V(®'=0,C) was found in Chapter Three and is given by
(3.10.15). The x-integrations in (4.2.11) cannot be evaluated

exactly and some approximation technique must be used.

4.3 High Temperature Expansion

Consider the integral piece of (4.2.10) 1in the high

temperature limit as §—0.

0
(4.3.1) I/:: &?;—;—1§dx Xl% ‘__ex?[\(xw__\_ ’LAIY/‘L]%
(V)

One may expand the integrand in a Taylor series about B=0, and
subsequently perform the integration over x. Dolan and Jackiw

have discussed this expansion in detail {8}, and their result is
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given by
T = gt | Ay A _ AL
90 24 L b4
(4.3.2)
3 ‘¢
(2 +20nup 29)AY 1p6
y o4 O@ )
Substituting (4.3.2) into (4.2.11) and retaining only the

leading high temperature terms yields

N - -1 N ﬂlgq gﬂczl e2 1 2 .EJ
(8.3.3) V()= V(o) w[ T+ 2= (Be s )+

The 5‘“ term is independent of C and may be dropped. Thus the
finite temperature effective potential at the one-loop level for

high temperature is

@ VF)= V(o) + BEC (3eign) 4 -

4.4 Symmetry Restoration

Recall the =zero temperature effective potential from

equation (3.3.12) for ®¥=0 Landau gauge.

(a.4.1) /(¥ ,o) ct [)\ + —g)\ +9e )%C]%v@(ﬁl)
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Also recall its stationary points from (3.3.13)

(4.4.2) L =)

10AP™ +5 () +de)
U (B + ?e“‘)

(4.4.3) L =& QxP -

As discussed in Chapter Three, the prescence of the two
stationary points other than C=0 reflects the broken symmetry of
the model at zero temperature.

At high temperature the effective potential from (4.3.4)

has its dominant C-dependent behaviour in the form of
£ 2
(e.4.4) V(") = JF\$1C1(3€1+€A>/'ZW

and C=0 1is the only stationary point. Hence the symmetry is
restored at high temperature. From (4.3.4) it can be seen that
the first derivative of V(¢1C) 1is continuous, so the phase
transition from the symmetric to the broken case 1is not first

order.
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V. SUMMARY AND DISCUSSION

This chapter summarizes the effective potential techniques
just developed. It then considers their application to studying
models other than Coleman-Weinberg, concentrating in particular

on SU(n) gauge theories.

5.1 Summary Of The Calculation

The effective potential was introduced using the path
integral formalism in Chapter Two. The method of its
calculation was then outlined for the general case. A knowledge
of the effective potential allows one to derive many physical
results.

The details involved 1in the calculation were given by
example through the study of the Coleman-Weinberg model in
Chapter Three. Evaluating the one-loop renormalized effective
potential demonstrated the dynamical symmetry breaking of the
model, and also indicated that the result was gauge dependent.
It was concluded that the a priori assumption of having gauge
invariant physical quantities should ensure that one can work
with the effective potential method in any convenient gauge and
still obtain the correct physical results. The two-loop
calculation in Landau gauge was then performed which explicitly
demonstrated the renormalizibility of the effective potential to
that order.

Finally in Chapter Four the temperature dependence of the
effective potential was determined to one loop order. The

important result was that the symmetry of the model which was
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dynamically broken at T=0 could be restored at high
temperatures. It is this two phase nature, where a dynamically
broken gauge theory can have its symmetry restored, that will be
of greét_use when applying effective potential methods to other

models.>

5.2 Applications To SU(n) Gauge Theories

The techniques developed above may be used to study more
complex theories than Coleman-Weinberg. Particularly
interesting are SU(n) gauge theories describing quarks which
interact through gluon gauge fields. Both quarks and gluons
carry an extra quantum number known as colour in addition to the
usual set of quantum numbers. Since an individual quark has
never been observed, it 1is believed that only colour neutral
states exist. The quarks are bound in such a way that the
resulting colour quantum number of the state 1is zero. At
sufficiently high temperature, it is thought that the quarks
could undergo a phase transition to an unconfined phase of free
quarks. That such a transition is possible has been
demonstrated in lattice calculations of quark confinement at
high temperature {15,18}. Thermal fluctuations cause the gluon
fields to screen the confining forces between the quarks. It is
possible to show {15} that the <confining phase and the
deconfining phase correspond to states of the system where a
symmetry of the wunderlying theory is, respectively, intact or
broken. This symmetry is the Z(n) symmetry, where Z(n) 1is the
centre of the Su(n) gauge group of transformations

(i.e. Jlovexp(f2ri/n)}). At high enough temperature the 2(n)
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symmetry is broken and the quarks are free in an unconfined
phase.

What has just been described is a gauge theory
characterized by a high temperature phése with a broken symmetry
(deconfining) and another low temperature phase where the
symmetry is intact (confining). The similarities to the
Coleman-Weinberg model suggest that the effective potential
techniques reviewed above could be used to study the confining-
deconfining phase transition 1in the continuum for SU(n) gauge
theories.

As a specific case we take the SU(2) gauge theory which is

described by the partition function:

. i |
(5.2.1) Z: 0@(9%(}(?))dAf(i,ﬂexPo%gc}{Sda(El+81>

where

(4 A7 - L A7 +o(axay]

m.
o
(1

(5.2.2)
and

\ Q q q 1
(5.2.3) B = i[J;Aé -4, A, +3(A;XA/,‘)]

with a,i,3=1,2,3, Working from {5¢2.1) in a gauge

Ai(x)=%Q%QX§7, and using the same techniques shown 1in the
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Coleman-Weinberg example, Weiss {20} calculated the finite

temperature one-loop effective potential obtaining
A
— Ny agt L _ L BC_ |\
(5.2.0) V(C)=-2rmp™| g s k=51 | 5.,

This perturbation calculation is valid at high temperature and
shows that the symmetry is broken. The two-loop calculation has
not yet been done, and it is hoped that doing so might aid in
the understanding of how the symmetry 1is restored at lower
temperatures. The feasability of such a study is currently

being investigated.
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APPENDIX A - INVERSE AND DETERMINANT OF THE MATRIX M

In this appendix the inverse and determinant will be
calculated for a matrix M in the momentum representation. 1In
what follows k? is defined using the Minkowski metric g,

(Gps =1,g%,=—g£é) where 4,vy=0,1,2,3. The definition C%=CZ+C? is

also used. First consider the 2x2 matrix F given by

(A.1) By = Sq\)<£{'-—%Cl>-—z‘3—Cqu

where a,b=1,2 and § is the Kronecker delta function. The

determinant and inverse of F are then given by

(A.2) det F = (yg_%cl)(/kl_%{l)

' ng(/?f—-%{@} & z‘;Cqu
(F-4C\K-30)

Consider the 4x4 matrix N given by

(a.3) F‘;\:

(A.4) wa = ’“‘jm(j’}"A) 3 B'&M}zv

where A(,v=0,1,2,3. The inverse and determinant of N are then

given by

(a.5) N = —{H-AY(#-BE-A)

Gy (B -BE-A) =B A, b,
(B-BR*-A)( £2-A)

(A.6) N,;[)
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Consider the nxn matrix

A B
E D

for arbitrary, invertible matrices A,B,E,D.

(A.7) M =

Let us write the
inverse of M as

WX
e

The equation MM'=I leads to the following four conditions.

(A.8) M_‘ =

(a.9) w=(A-pp'EY
(A.10) 2 = (D-EA'B)”
(A.11) X =—-A"B3?
(A.12) N =~-D'EW

Take the following specific case for M

(A.13) Adb = Sap (B-4C) - GG,

(A.14) Bay = 1€ (e B,

(A.15) Fup = —4ek. &, C4

(h.16) Dicy = = 3u (K- €C) +(1- <) b B,

where a,b,f,g=1,2 and m,v=0,1,2, 3.
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Now A' and D' can be found from (A.3) and (A.6) respectively.

The result is

S A-AC)H4CG
(-2 h--4C)

-
(A.17) /\qb

D~\ e __9MN<%? e > <l*d)ﬁuﬁv
My ( fll“ oL €1C1)< /?2-1__ €1C1>

(A.18)

Combining (A.13) through (A.18)

! P! o ks f C.C
e (el = Sl d0)-deg 4 SR E e

L ~ ) (1 _eChb,
(A.20) (D EP\ B)‘&V 9,4“/( C)+( o()ﬂz ﬂl (ﬁ{l A_C'z)

The determinants may be evaluated to give
(8.21)  det(A-BD'E) = (B- 2 A ) K
(r.22)  deb(D-EA'B) = - o (B R-4CT'K
where
a.23) K =(k- %C")(Kia el(_l) rotC A

Using (A.19) through (A.23) one may obtain the inverses W and Z

defined by (A.9) and (A.10). The results are as follows
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(R-wec) B CaCy 1!
(A.24) WQBZ(H’%CL) %QB(K’L—%C")%—%QCB%—W K

(A.25) %M‘}-_—_ ("‘ SM\JKL’\U&“&V)K—‘L(}LI’%Clxg?}“'eicl)»z.“}zv
f‘lll K ( - e‘LC'Z,)

Substituting the expressions for A,D,B,E,Z,W into (A.11) and

(A.12) gives

(A.26) Koy = Aot EqcCe by K™
<

(A.27) Yup = —heot %MigaCa K

The inverse of M is now given by (A.8) with W,X,Y¥,Z given by
(A.24) through (A.27). Note that for o=0 the results reduce to

the simple form
- -
(3.28) Wy (=o) = [So (8 4) + A, 8-ACT (-4 )

(A.29) %Mv(o{:o) = (=9 +/?auﬁv/¥f)<ff/ eicl)_‘

|l

(3.30)  Kg, (#=0) = Y | (az0) = O

Finally the determinant of M may be calculated. Recall the

following matrix algebra property {17}.

(a.31) det M = C\a’(é B) = (detA) det(D-EA™B)
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Substituting into (A.31) from (A.2) and (A.22) gives

—\

(A.32) ded M - —x“(ﬂf—é("y(ﬁf— %CI] K(pam'_%cz)(}zg_ )t_gcz)
(3.33)  detM = - (=P (-2 YK
Now define
w Yt Y P
(A.34) r =\ +(1-weerX')
(2.35) s = |—(1-ae)h

Using the definition of K in (A.23), the determinant of M is

given by

(A.36) deX™M = — o('(,?,_’t et 3(}5_1, %(ﬂ(,?{'— \-)‘ir Cl)()f_ %_ s Cz)
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APPENDIX B - SOME FORMULAE REQUIRED IN THE TEXT

Below are the formulae for some dimensionally regularized
integrals which use the Euclidean metric (gﬂv=5uv). They are
taken from Ramond {16}. The methods for obtaining these

formulae are explained in a paper by 't Hooft and Veltman {19}.

(B.1) diw’& ‘ e P(P"M’) |
Qe Beteke) T ()

(B.2) Ch _ Auky (L*fr— Dulu[(A-n) «_SMJZF(A—MZI
' @apr (ReM229) T T (r'\”\’)’*“ (=)™

CPW,PL ILM%V}&Q}ZG == (H"TYW Pu Pv PQ Pg- P(A‘Ml)
(R MLAep) [CRY (M=)

["(A-ru-1)

(B.3) +1(c
7-( v o P +Sw Pupe +%Q6 Puly + %MQ Py O +%ve PuPs * Oug PV?Q) o 1) =a0-1

4( By, Vg * Dug Bueg S‘(?%w) P(Aw-z)(f’\l—f)-ﬂm Jﬂ

Also taken from Ramond {16} is the formula

n o\ ['( édf’) gl ; S(1- ﬁ%dﬂ') i "‘?4
(B.4) &TV D-’) =& [(a, e el dn n " For i
P9 013 o (2 Dada) 1 +de an

1

Q

where the d} are known as Feynman parameters.
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The expansion of the P—function {16} about its poles at

non-positive integers is given by

m

(B.5) F(—ma—i) = %g— g%—\—W(m—H)-\'%[—g}J, w1<m+n_w’(m+ﬂ+0(gl)}

where, using the Euler constant Y, we define \l by

(B.6) q)(m+|):~\6+\,\—:‘L-+ R =t ) Wy = =Y
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APPENDIX C - EVALUATION OF I(A,B,C)

In this appendix we evaluate the integral

h

e e e
.1y T(ABC) ¥ (@ +A) (5+8) (24C)

with p?, k2, and (p+k) defined using the Euclidean metric

(9uy =%y ). Introducing Feynman parameters from (B.4) gives

CRENTA —l) (it 43)"3

[ n
fc.2) L= Igéag g a—’% 31&) I?J, Loip-ho + A, +841+Q3+E(d\+dﬂ3

(1 ely) (%1 +ds)

Applying (B.1) to the integration over p

g Li%a gda‘gédzgé ds g(i‘“‘i’f“@“)(*ﬁda\f’h

L= (L) (it + iy + dady )2

0

n ~3+"
X g d : li};,‘} (A"‘x + Bty ‘*‘C"(a)("(l“"*a}] h
2m)

(ﬂ(;afq_ + o) oy + ol dy)

(€«3)

Applying (B.1) to the integration over k

| l i

n
6 o b (1t +el 1y Felyedy)
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Substituting n=4-2¢

.5 T= f’fj:&ga i Sy B 1t5)

[¢] 0 (a(ld -\'0( °l3 ““dq_"lg)

Note that the integrand contains poles in the o, rdo sy parameter
space. The integrals can be evaluated by following the
technique of Elias and Mann {9}.

Consider the pole where «,=o,=0 and 43=1 and define, for

small positive £

| -2
( ) P gz z gd %( ) (Adr+&h+Cd;) 3
C.6 = o« "(\ . o

i3 1) dolq ) ddy toly tdy 1 (A(dz iy 4 43)1 €

@ o I=£

Changing variables d\—Ed\,dl Edl,d3—1—£d3 and using the identity

Sax)=a'Q(x) gives

\-2¢
s el 2]
(c.1) P = J«. iy € +°‘1“°‘3>Eule + () = Ey(detlr)]
e} 0

where the df have been rewritten as ;. After applying binomial
expansions to (C.7) and expanding € in a Taylor series, one has

T
(c.8) P\?. —22 5 g‘J*\g A"‘lg doty Qv ey =ely) C‘-li(‘*\h(l){‘l
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With the variable change &,=Qx,o,=0(1-x) (C.8) becomes

\ | |
e g ~1 ~\2E
(c.9) P\l—iﬁﬁ—»gdxg?d?gd*a o(0-dy) C o= €' C
: o o 0
An alternate form of the pole P, will be needed. By making the

substitution di=1-d3 (C.8) becomes

\ | | |
(C.10) P\l ~Ei°—9gdoz,gddlgdo<3 %(o(‘+o<1+ot3*!) rhe (Wr‘ﬂ){—l

o o o

The leading €50 behaviour of the poles at «,=d3=0,4,=1 and
d=4d3=0,d(=1 can be obtained from (C.5) by a similar derivation.
More simply, one can relabel the integration variables in (C.6)
and obtain the results below by comparison with (C.9) and
(C.10). The two alternate forms for each pole are given by
(C.11) | P, 225 ¢ Rt

|

| |
(C.12) Pw—iig—%gciaiscumga% S(2redy +dy-1) B («+o<fl

o o
i, -1 p VL
(C.13) 913———96 . < A

{ { |
(C.14) Plg‘ﬁj&ﬁgddngd¢xgcld3 (oot ty=1) A7 (hrety)

Q o

One can rewrite (C.5) by adding the poles in the form of
(C.9),(c.11),(Cc.13) and subtracting them in the form of
(€ A0), (C.12),;(C.18)
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This results in

\

€ a2e 12 ‘ !
= %%%ég [A +B€+C - +5&m§4«1§ dd; %(0(14-0(7_-[—0(3"1)

O o o]

(c.15)

(A °¢|+9alq_ +Cc(:i—li i A 1-1¢ Bm.i ( 1-2¢

o _g- € WY
(dy 4oty bobady) T (ot Eoely) T Btk

Changing variables «, =Qx,% =p(1-x) and performing the o3

integration gives

-2€ -2€ -2 ( [
T= 0] [A e gdxgw?

- QJ' ﬂ,}H—I{ ¢

(o}

(c.16)

X %[AQX +BR(l—x) +((I—\>)\Jlalj A"li B"““i C e "9

[RCaR)] = S R

where we define a=x(1-x)-1. Performing a Taylor expansion in §

inside the integral results in the expression

I= M(-1) [A"1E+ gk, crrE " S'dx g'? dQ

(L\ m \)L‘:Li i ] 0

(C.17)

Agx +Be(1-x) +C( 1) A B C
X 2 2 - z S
¢ (1+aq) (-p o 9

t € G(A\85C> + O(@‘ﬂ
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where

I
_ Apx +BR(i-x) $C(1-%)
G(ﬂuBsd —gd"og?d? ):{ Rt (1+ag)t ]g ,?4.\[?( H’QQ)]
(c.18)  —LAn [Aex +Bq(l~x)+C(\-Q-)]}—A (l—@x)—ll__fn'\(l—?x) ~Umﬁﬂ

B [1-00=9] " [ (10010 “UnB] ~Cg* [ I '”“Ci)

With the aid of integral tables {10} consider

{

C gdxg;? [@+q9Yl—-U

a a

It

-C gldx [!%(Hq) ta( |+a)”]

(C.19) :
= Jl'ngclx X!

§'de cl? [Ax +B(I~x)/C] _ g'dx Ax +8(z—x)~<]
& 4 (I+aq)t (\+a)

6]

(C.20)

{
= (A+B—7\C)§ dx X'

l

\ |
(C.21) gq’x gd\) [«AQ( ) By i—gxm)ﬂ N ~(A+B)§ d ¢ (1-9)"

© 0

= A+B — (A { 4o ¢

0

Substituting (C.19),(C.20),(C.21) into (C.17)

| Toed [ A58 |
(c.22) I = e | . +A+BHC +€G(AB.C) +O(e)




71

Now perform a Taylor expansion in £ on all but [(2e-1)

1= zfgz [AH?C +%A+@+@2Hﬂn<éﬂj—18ﬂn<%,) -2@“(5})%

(C.23)
Tt gGM\BsOHAMA B LRB + 2CARC + LAHBHO) Rt trr

¥ Lnbir( A+BHC 1A n A-2B2RB-C %\C% + O( eﬂ

Using (B.5) to expand [(2¢-1) finally yields

I(A\ch): 0;7-,_)1 [H_J%j{g +* 7__\{ gZ(FHB%C)\l)(Z\I YFARABYC
(C.24)

—zmn(é;,)-wz.\(%r)-uzﬂ(gn@ +E (A0 +O0C)
where

E(ABC) = -(\eﬂl)””[%@m\e\c) A B2A FBORB +(h2C

+ (A+R+C) 2l & Iltrr (A48 4C 1AL A LBLnB —2.C £nC)
(C.25)

* YQ) {A+g+c LA Ln(A/47) - 2LBAn(B/ ) ~’zc!4n(c/%)3

¥ (A+8+c\{ Z y ya) - W’mgj
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APPENDIX D - EVALUATION OF J(A,B,C)

In this appendix we evaluate the integral

I (N
(D.1) T(F\;Bﬁ)—g@ﬂ)ﬂ @n” (Er&5ra)(k2B) (e C)

where the Euclidean metric (gAv=S;v) has been used. Consider

the identity

(0.2) |= B"c"[ﬂf +( 2B gﬂc)—p’(k‘%B%P(p’%cg
Inserting (D.2) into (D.1) one obtains

J(ABC)= B —%ﬂ Z%n [u(ﬂﬁ B)(p+0)p?k? - (14B) k™

(D.3)

~(Prc)p I((P”& ) *BXP%CE (p-£Y

Thus
0.0 TOB0)-E'CTABY + T, (Ao} - Ti(A,0,0)-7:(r,5,0)

where

(.5) J,(88C) :gé"\h (;){}" (p* ﬁ[(ﬁ&ﬂﬂ )(b2+5)( p»fcﬂ |
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Introducing Feynman parameters with (B.4) gives

3/\ (Q>B>C\) =1 ghd .gAd; §d0(3g é—n‘gh (—i:%)” %(o{\ koly tolz— j\ (c(( oy %

(D.6)

3
X fup, hb]:?ﬁ bR R e (Mdﬂ

@M+d§) (£ +43)

Applying (B.2) to the integration over p

QBC) L*YJJSI(g %@ddhﬁh ud? gﬁ;

(kg +etelz + by 3P V2

e ngsk"r‘w o (ad,ﬁxg“cdg)(wg]

(o, + Xy (Aiely + Aoty 4 oty of)

+‘%£ Qﬁﬂ@dﬁd“*%ﬁsﬁf “h+&+CQ@ﬁ%%Q

2
Q&ﬁdg Gi +dd3+df§)
Applying (B.2) and (B.3) to the integration over k

3,(8,80)= ﬁq%l )r:])g gc\e( gtlo( S oy cky ! )(ﬁd +8a +C,() N

(D.8)

_1.,1_1
X [ [(ma)o(} + (o(pkL~+J\‘oR3+ a(zoasﬁ[d,okz+o<‘o<3 +O<L¢<3] 23

Substituting (D.8) into (D.4)

T0p0) = plbel (ufbafd, Sl [y

(D.9)

+(ol|o(,_+a(,o(3+o(2_o(5}[(ﬂd,48dl@i ¥ (A A, o = (Aﬂ&f ]
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Putting n=4-2¢ gives

js ( ‘ql Bﬁ) (:gé?i:f:jg SC‘“‘&‘U g % (Oﬂ Foly tddy— | )

(o)

Wl 105 X[(é’léd.l +(°(. oh, +X (olz + 0(7_0(3)][0(,0‘1 ey +o(zo<;}£—l+

X[@c&‘ 3 Bat, Co(j)—szr ( ﬁoﬂs—le“ ( A, + Cty T—K* ( A, + Bo(j—f}

As in Appendix C the integrals can be solved by following the
technique of Elias and Mann {9}.
Consider the pole where < =,=0,<=1 and define for small

positive §&

g P )

I—€ TR +°‘7-°‘3)L*€
(D.11)

){(Qo( + B, +Ca T Qdf ~ (A *Cdf (HG( % de)}zg]

Changing variables d(=qu,d£=Edz,d§¥1-£A3 and using the identity

Sax)=a'&(x) gives

= féd §4d £ Sl +os 3[( 26) £ 4 £ty ) (-6
E(idsu(o(ﬁog(l\ﬁds)% J

(D.12)

%[(di[ . "E"‘B)T-Zi (A &‘YZE’ (fes,+( l-ids)\’g_lg
. B m&(‘ . Bidz]g_li
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where the o; have been rewritten as ol . Applying binomial
expansions to (D.12) and expanding € in a Taylor series, one

obtains the following expression for the leading term in &.

! \ | 3, 2K
(D.13) PQ—L%‘O——) ng,&‘Aoklg cio(3 %(d\“dz" "Lg) ( ii\] Ei 33_:

With the change of variables cxfpx,og??(1-x) equation (D.13)

becomes
/(1) M
(D.14) b, —E2° 5(32¢) g™ &Xg?A?gid o '%[ ﬁ(Sﬁlgil)gc

\ \
An alternate form of B, will be needed. Setting de=2£-dx(l'x)
9 S
in (D.14), changing o§'=1-<; and changing variables back to

o =px,<, =0(1-x) gives

'5‘(3*28) BCQ—ZE]

(dt 4‘7(3)}&

(D.15) ﬁl—&’—g—ﬁﬁd.gg&zg‘c\% S (ol ety 1)

One can relabel the integration variables in (D.11) and obtain
the leading &0 behaviour for the pole at oA =4=0,d, =1 by

comparison with (D.14) and (D.15). The two alternate forms are
(.16) P—E22— 5= (32€) C g%

\

Lo 1 (32) CpF*
(D.17) 205\ \d =
Del? (:)13 § (§ cgdsg@|+o<z+o<3 l) (0(‘+°‘3)2_E




76

The leading &0 behaviour of the pole at <,=<,=0, «,=1 follows

from (D.10) by a similar derivation, with the result

(D.18) Plg——@—(s— AE) ~2<a) 3- QQ( 3-7¢) F\I 1€BC

t {

(D.19) Pls g&a,(glg&d A | ) [(6—28)@‘28}@‘2&)H[”ZEBC}

é(o(l +c(3)1~€

One can rewrite (D.10) by adding the poles in the form of

(D.14),(D.16),(D.18) and subtracting them in the form of

(D.15),(D.17),(D.19). This will result in the following
expression

+C 8}28)

29 'ae-3) | (3229)
J80= UBC UmE | 2¢ (8

(é 2¢)(3- 1«2{(2—16))[\ e S dlgif"z.g 39\3 g(o(|+o<7_+o<3—l)

(@] S (6]
(D.20)

(é~2s)o( +C=L‘ot1+a<lo< +oky o) f r2€ 3-2€
Xg (o(d +o(c« +d5094~£ _L |+Bolz+co(3j +(Ho(|\

(Hd +C°(3YD~ (Qd +B7( \gZE\J = (3 22)8(: (O((—f lE—Z

“%_ (3 'la C Bl—zg(d\“s)E{' Jé(é'z‘g\)@ ”25)(2‘2‘2) Bcﬂlig dlﬁj’ﬂ
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Changing variables oH=?x,d3=9(1-x) and doing the integration
over d, gives

J@&eC)= %;E_@__@;jg [ 5%, (3 %)+. (—25)(335&—2@&@1

e L-26)(1- )2 (1+ap) 2€ 3=3¢
+§Ay§ ?C\QEE E?( l-‘:a;Sq-EﬂI(ﬁ(”?\*B?" *C?(“"ﬁ + (H(H’ﬂ

N ( Ali-p) %CQ((- K\\g‘z‘i ( Al-p) + B\»j—ﬂ ‘JiGQEBBCLZE( |—€(l‘><)f’z

(D.21)

3R 1pc) —Hbae)62e) (2208 \’eﬂ

where again a=x(1-x)-1. Performing a Taylor expansion in €

inside the integral results in

ThBO)= (‘ﬁgﬁ;& [ sl NI (é-k)(sisi(z—zd ==

e gx( )i-p Al %(5)(-9)
+3§&x§&e%lﬁ (ﬁoQW‘ é} +Q®;}

(D.22)
+ é( Bx +C((—x)j %‘);j)jk t x(1-x) (Bx +C(I—X)\ P (1 q\))—s

52 (10" 5B Lo 4eHlyg0 @(gﬂ
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where X _ _(_{ ' 69 tp(\tap) 3
WhBo= L gaxgm i{w][z (AP (A1)

=2 (Al9)4Bpx +C gmﬁiﬁq(ﬁa-p)w@( i p(i0) + 2(AC) B [ o (ACHD B

+2( R(0) 4 Cel l»«))g/om AC1-p) +Col( _xﬂ@g[“([x)[ 2 (1-¢)"

(| +cxp}
(D.23)

i\é(l PY* P(H’ ap g (?({"’O‘Pﬂ (’)_IQ(I_P) —,LBPX J\—CP([—X)X ¥ \lHBCP_Z

P (l+ap)*

S1LABCE A -LARCE A + B *382%‘;8);%& L3GD
X

t(1-eG] ] 8C* +3BCUnC - 280 In(i-of f—x))}

With the aid of integral tables {10} consider the following

w|>

(D. 24)3F\g "S [Mﬂ)} L]:Mg"&x[“é({m)ﬁmflm)—(l(mi}: -

Pll+wpt P

(5.25) za{ §4 [%% Agilx@-} = 1

(D.26) §:\"QP [(qut(lez)\ﬁX(!—x)(l P)] g(&x 1(Bx +c(:—><3§ B+C

) ( (
| Txas0(Be+Cio0lp | = (o | Bx i) _
(D.27) }\xgge [X x(u:—épm E] ga {%—%(&Cﬁ&xx

o
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(0.28 -\;c;ga&@@[—{_—g%_x—){l: 1 [ ] 4C 4cfh
E “%BS*"SAV[ G—M - -46) L‘P[%I =484 dop

o

Substituting (D.24) through (D.29) into (D.22)

o) AR 2 oo

(D.30)

+2A & F(B+c) + EH(ARC) +O(€L)j

Now P(Zi-3)=rw2g—1)/(2&-3)(25-2). We can thus perform a Taylor
expansion in &€ on all but [(2e-1) and expand rRZg-l) using (B.5)

to obtain

(4A+R -rc)

S(A8,C)= \T(E—LF[S el %SU(Z (L{ﬂ+8+c>

(D.31)

=30 5 L(8+0) =128 In(A/4g) —38.4-( B/47)

—3C Qn(c/WE) + E.(Bgc) + OCe)




where

(D.32)

80

A g )= - ,g,(xmz)’l[w@) BC) +12A42A + 384,28

+ 3020 ¥ LA +28 2nf +2C 0 C +L20(RAT3B+3C)
+2 Llr (—\2 ALA-3BL B -3C L L ~l0A + £B + %C)
Nh\(&mﬂammﬂ/égﬁlx(B/Lm)—éc D far) LA +%’E+%'C>

YA Ll AL tr) =Z Bl (Blum) - ZC b (Clug)

(2 A+38+30)( &+ ) _py) oA+ 6B +é<1
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APPENDIX E - EVALUATION OF K(A,B,C)

In this appendix we evaluate the integral

(e.1) K(AB q:g o dh e g3 g3 r CRartlf b 8)/ (b Pl
y Dy WIS (]7;*)& ((%P)l*g)( LZ+ B)( PlJrC)

where the Euclidean metric (gAp=SFv) has been used. Equation

(E.1) can be written in the form

[ o+ (Rp)/ (heo)]
(2n® " (thap? +‘\>(J<Zf8>((> +C)

mz)KﬁB}S

Consider the numerator of the integrand

(£.3) h-o” + (k2 @) (B o)™

One can expand and insert 0=(k?-p?)(C-B)+Bk?-Bp?-Ck2?+Cp? to

obtain

(E.4) K;:“){Zﬂk?-ez + D”\!t:)«paz +P +(ﬁ°’ (C Q)+l B- QB—IAIGLPZQ}
(Rt p)-

Inserting 0=2(k?+p?)-2(k?+p?) and regrouping terms gives

=]

(£.5) K, = (Iip)—20k% ) - JeB)keegd + b kB ()2 Jeg) =K

@u 9)1




82

One can combine appropriate cancelling factors of A,B,C to write

(E.5) in the form

8" R
A (btp)?

& (o) P |
(E.6) JrLHB) (m—i[@é@“(,‘ﬁrcﬁ + :{q* (&—f\rfz):%(/pﬁ ) ¥ p( Pvr(:)
VN

If we add 0=(k+p)* -(k+p)~ to A in the numerators, K, becomes

Ko= (Uu?ﬁﬂﬂ\fﬂ -2 (K@) -2 (prr) 4 28+42C +

Ko = ((01‘( A ) -2(J48) -2 (§4c) + (2BRC-A) & Q'\(GB)EU&B)
(e %)(Uup}z’rﬂ }(J@r ]O)WZ +( P C) - (p"*rc) (@q pﬁ H> (k+ P)~1
A7 c—eﬂ(@wﬁ A) ki p) - »] ¥ A"[J)&(&a §)(Gepy A) (forg) ™

(E.7)

‘Qz(k?* B) + o%( o +C§(U?e+g)2+ A kepy™ - px( P*+C) 4+ p¥(k™R)
= P (ks B)(U)HP)ZJr QX (o 9\‘1 ¥ L3 a c)
(e ) (o) (o)™

Substituting (E.7) into (E.2) |
K(RA,8,¢) = K (B,0)-2K, (A,C) -2K, (A,B)+(28:2¢-A) T(A B)
~A"(c-8) ( KAL) =\, (0,0) =¥, (A,8) + K, (0, Bﬂ
(E.8)
—ﬂ_‘(C-s)z[T(AJB)C) - T(0,8,c)]

A7 1(0,0) -Ka(00) +K5(0,8) ~¥a (A,8) = Ky 6,0)
X, (A,€) -y (0,8 + Ky, (R )
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where

5 K (0,8)= 035 2 (kra) (s
(8.10) K, (A,8)= gc({“ \fg %\n ((&ﬁp)ﬁﬂ}”‘(pae}*‘

(E.11) X (AB) = g@rr 8 ) ° ((ﬁ‘rf’)-{-)q (F‘fB}

(E..12) \<.+(Q;B\:S %if’"g (2)"

(E.13)  1(ABO)= g(’l'n}”& @%h (Uh&p\l% ﬁ\ﬂl(JZZJrB)-'(FLJrC)“

(p%+8)

.~ With the variable change k’=p+k,p’=-k the expressions for Ky, K3

and KW become

@140 K (AB) =K (AB)

(E.15) G 0,8 = —(A+B)X (A, B)~ g%%n& 7 Dum f(p+8§]
(E.16) K (H 8\— "BK QB) g(z )”Sc(\zn,f“ ( 2+Q>-‘

Substituting (E.14),(E.15),(E.16) into (E.8)
K(0,8,0) = K, (8,c) -K, (1,0 -K,(A,8) +(2B+2c-A)T(§ 8,0)
€171 f7(B-O)| KBS -K0,0-K ®,8) +K,(0,8)]
- (B-<F| T(A8,0) =T (o, B,CB}
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Applying (B.1) to (E.9) and then setting n=4-2¢ gives

.18) K (8,8) = [Gn) (e (Ag)E

Substituting (E.18) into (E.17)

K(,8) = QBe2c-R) T(ABA) A (8-¢T (T(1,89)-T059))
(E.19)

4 P—LSLEE_{(BC\\E (ﬁ \'E(HB‘E—M{[B :g 2&67 Jrcgla%

Expanding all but f%£-1) in a Taylor series in € yields

14 (QJB <) =(2B2c-N)T (AR, - A (B-V(T(n,8,C)-T(0,8,9))

T e A8 e[
(E.20)

+ (Ae+8 + 84280 bn (/1) 3+ (C+A-8)C I (Gt )]
e L(0,80) + 0@}%

e 2L (AR,C)= BC 42BC —Acf2Ac -ABLAR +BC baiC
—Crc —GAB +BC LB ~(R-c LA

g.21) 220 A (~Rclnac +Cihac + RBMn B —BCLn B)

U A te] Lo A ACHAR 4874 -2 BO)

+B(B+A2) 1R + C(CHA-2R) an

+ 4 Lty <BBC- AC-AR-go-C?)
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One can expand [(s-1) with (B.5) to obtain

K(9,80)=(2erc-A(T@RA-F(gQ) -A (B T(A80
~F~L(9,E,c\ -T(0,8,0) + F;(o,g,cﬂ w(bn?d” é (3Bc—ﬂc ﬂ%~82—c1>

(E.22) |
e +&" | 29160) (38— AC-RB-B-7) 4 B(&H 26)dn (B yq) +(Ac+AB
+ €42 -20) dn (A/am) +c (e a—28) La( C/L}r{rﬂ}‘\'FK (W80 +O)
where
b (,8,0) = Qyac-aE; (R ) —9“'(&—@{% (Agc)-FK(o, e,c)]
o *(ltv@\i{ L(n8,c) *1%@\[ (At AR +€4C-28c) bn (A f471)
E.23
+B8( 8A-2¢) Wn(B/ym) + -z@ln(c/cmﬂ
¥ 3(2) ( 38C-Ac-A g~8”*—czﬁ%
and F;(A,B,C) is given by (C.25). Finally one substitutes

(C.24) into (E.22) with the result
KA, 80) = () Trer( A-3ncea) (@)

o Iw@ CENODEICNS )+ A @) =6 BC)

(E.24)

~A(A-38-3c) Lo (Alym) +3 & La (R /ar)
23 la (C/Lm]} F(ARC) + O
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